B.A./B.Sc 4th Semester (Honours) Examination, 2019 (CBCS)

Subject : Mathematics Paper : BMH4 CC08

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

as far as practicable.

[Notations and Symbols have their usual meaning.]

Group-A

Marks: 20

1. Answer any ten questions:

 $2 \times 10 = 20$

- (a) Evaluate: $\int_0^3 [x] dx$, where [x] denotes the largest integer not larger than real number x.
- (b) Let f(x) = x if $x \neq \frac{1}{n}$ $f\left(\frac{1}{n}\right) = 1$ for n = 1, 2, 3

Is f(x) Riemann integrable in [0, 1]? Support your answer.

- (c) Give examples of two functions f and g which are not Riemann integrable in [0, 1] but $\phi(x) = Max\{f(x), g(x)\}$ is Riemann integrable in [0, 1]. Answer with justification.
- (d) Find $\lim_{x\to 0} \frac{1}{x} \int_0^x \cos \frac{1}{t^2} dt$, if it exists.
- (e) Test the convergence of $\int_0^\infty e^{-x^2} dx$.
- (f) Let f and g be two continuous functions defined over [a, b], a < b, such that $\int_a^b f(x) dx = \int_a^b g(x) dx.$ Show that there exists $c \in [a, b]$ such that f(c) = g(c).
- (g) Test for convergence of the integral $\int_0^1 \frac{\sqrt{x}}{\sin x} dx$.
- (h) With proper justification give an example of a sequence of functions $\{f_n\}$ which converges pointwise to a function f such that each f_n is Riemann integrable but f is not Riemann integrable.
- (i) Test for uniform convergence of the sequence $\{(\sin x)^n\}$ in the interval [1, 2].
- (j) Let $f_n(x) = 1$ if $\frac{1}{n} \le x \le 1$ and $= nx \text{ if } 0 \le x < \frac{1}{n}.$

Find $\lim_{n\to\infty} f_n(x)$ in [0, 1], if it exists.

- (k) Test the series $\sum_{n=1}^{\infty} x^n (1-x^n)$ for pointwise convergence and uniform convergence in [0, 1].
- (1) Give an example of a power series which converges nowhere except x = 0. Justify your answer.
- (m) Find the region of convergence of the power series $\sum_{n=1}^{\infty} \frac{n!(x+2)^n}{n^n}$.
- (n) Examine whether $\sum_{n=1}^{\infty} (\sin nx + \cos nx)$ is a Fourier series for some bounded integrable function over $[-\pi, \pi]$.
- (o) Show that the Fourier series of a bounded integrable odd function over $[-\pi, \pi]$ consists of sine terms only.

Group-B

Marks: 20

2. Answer *any four* questions from the following:

 $5 \times 4 = 20$

(a) State and prove Fundamental Theorem of Integral Calculus.

2+3=5

- (b) If $\{f_n(x)\}$ is a sequence of continuous functions on [a, b] and if $f_n(x) \to f(x)$ uniformly in [a, b] as $n \to \infty$, then prove that f(x) is continuous in [a, b].
- (c) (i) Prove that every monotone function over [a, b] is Riemann integrable therein.
 - (ii) Give an example with proper justification of a function f on [0,1] which is not Riemann integrable on [0,1] but |f| is Riemann integrable on [0,1]. 3+2=5
- (d) Suppose $f(x) = x^2$ in $0 \le x \le 2\pi$ and f(x) is a periodic function of period = 2π . Obtain the Fourier series of f and examine the convergence of the series in $[0, 2\pi]$.
- (e) State and prove Weierstrass M-test for uniform convergence of a series of functions. 2+3=5
- (f) State Dirichlet's condition concerning convergence of Fourier series of a function. If f is bounded and integrable in $[-\pi, \pi]$ and if a_n , b_n are its Fourier co-efficients, then prove that $\sum_{n=0}^{\infty} \left(a_n^2 + b_n^2\right)$ is convergent.

Group-C

Marks: 20

3. Answer any two questions from the following:

 $10 \times 2 = 20$

- (a) (i) Let f be a bounded function defined on the closed interval [a, b]. Prove that a necessary and sufficient condition that f be Riemann integrable over [a, b] is that to every $\epsilon > 0$ there corresponds a $\delta > 0$ such that for every partition P of [a, b] with $||P|| \le \delta$, the oscillatory sum $W(P, f) < \epsilon$.
 - (ii) If a bounded function f is Riemann integrable in [a, b], show that |f| is also Riemann integrable in [a, b] and $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.
 - (iii) Show that $\left| \int_a^b \frac{\sin x}{x} dx \right| \le \frac{4}{a}$ for $0 < a < b < \infty$.
- (b) (i) Prove the relation $\beta(m,n) = \frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$, m > 0, n > 0.
 - (ii) Let f(x) = |x| for $-\pi < x \le \pi$ and $f(x + 2\pi) = f(x)$ for all x. Find the Fourier series of f. Hence deduce that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$.
- (c) (i) Test the convergence of the integral $\int_0^\infty e^{-x} x^{n-1} dx$, for different values of n.
 - (ii) Show that $\frac{1}{2} \{ \log(1+x) \}^2 = \frac{1}{2} x^2 \frac{1}{3} \left(1 + \frac{1}{2} \right) x^3 + \frac{1}{4} \left(1 + \frac{1}{2} + \frac{1}{3} \right) x^4 \dots \, \forall \, x \in (-1, 1).$ 5 + 5 = 10
- (d) (i) Suppose that a power series $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has a finite non-zero radius of convergence ρ . Prove that the series converges uniformly in each compact subset of $(-\rho, \rho)$.
 - (ii) If two power series $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ converge to the same sum function in an interval (-r, r), r > 0, then show that $a_n = b_n$ for all n.
 - (iii) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} a_n x^n$, where $a_{2n} = \frac{1}{3^n}$, $a_{2n-1} = \frac{1}{3^{n+1}}$.

4+3+3=10